Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(3): e13338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629461

RESUMO

Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.


Assuntos
MicroRNAs , Micotoxinas , Humanos , Micotoxinas/análise , MicroRNAs/genética , Contaminação de Alimentos/análise , Proteínas de Fase Aguda
2.
Adv Sci (Weinh) ; : e2400615, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489666

RESUMO

Selenium (Se), the world's oldest optoelectronic material, has been widely applied in various optoelectronic devices such as commercial X-ray flat-panel detectors and photovoltaics. However, despite the rare and widely-dispersed nature of Se element, a sustainable recycling of Se and other valuable materials from spent Se-based devices has not been developed so far. Here a sustainable strategy is reported that makes use of the significantly higher vapor pressure of volatile Se compared to other functional layers to recycle all of them from end-of-life Se-based devices through a closed-space evaporation process, utilizing Se photovoltaic devices as a case study. This strategy results in high recycling yields of ≈ 98% for Se and 100% for other functional materials including valuable gold electrodes and glass/FTO/TiO2 substrates. The refabricated photovoltaic devices based on these recycled materials achieve an efficiency of 12.33% under 1000-lux indoor illumination, comparable to devices fabricated using commercially sourced materials and surpassing the current indoor photovoltaic industry standard of amorphous silicon cells.

3.
Sci Rep ; 13(1): 21767, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066093

RESUMO

Urban street greening is an important part of urban green infrastructure, and Green View Index (GVI) is widely used to assess urban street quality and ecosystem service value as an important indicator to quantify the perception of green street landscape from a pedestrian perspective. However, the distribution of street greenery is imbalanced. Therefore, to explore the differences in street greening levels within urban cities, we crawled streetscape data using the Internet to assess the spatial distribution patterns of urban street GVI using deep learning and spatial autocorrelation, and combined 11 surrounding environmental features with multi-source geographic data to further analyze the key factors influencing the spatial variation of block GVI using ordinary least squares, geographically weighted regression (GWR) models, and multi-scale geographically weighted regression (MGWR) models. The results show that the mean value of GVI in Fuzhou city is low (23.08%), with large differences among neighborhoods and a significant spatial autocorrelation. Among the regression models, MGWR has the best fit with an R2 of 0.702, where the variables of NDVI, house price, accessibility of water bodies and parks, and the proportion of built-up land have a greater impact on GVI, and the factors do not have the same spatial effect size. The results can provide a scientific basis for promoting green visual equity in different blocks.


Assuntos
Ecossistema , Regressão Espacial , Cidades , China , Análise Espacial
4.
Chin Herb Med ; 15(4): 496-508, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094018

RESUMO

Ischemic stroke (IS) is a severe cerebrovascular disease with a high incidence, mortality, and disability rate. The first-line treatment for IS is the use of recombinant tissue plasminogen activator (r-tPA). Regrettably, numerous patients encounter delays in treatment due to the narrow therapeutic window and the associated risk of hemorrhage. Traditional Chinese medicine (TCM) has exhibited distinct advantages in preventing and treating IS. TCM enhances cerebral microcirculation, alleviates neurological disorders, regulates energy metabolism, mitigates inflammation, reduces oxidative stress injuries, and inhibits apoptosis, thereby mitigating brain damage and preventing IS recurrence. This article summarizes the etiology, pathogenesis, therapeutic strategies, and relationship with modern biology of IS from the perspective of TCM, describes the advantages of TCM in the treatment of IS, and further reviews the pharmacodynamic characteristics and advantages of TCM in the acute and recovery phases of IS as well as in post-stroke complications. Additionally, it offers valuable insights and references for the clinical application of TCM in IS prevention and treatment, as well as for the development of novel drugs.

5.
Gut Microbes ; 15(2): 2290320, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38059752

RESUMO

Women's health encompasses life-course healthcare, and mounting evidence emphasizes the pivotal contribution of gut microbiota. Therefore, understanding the temporal dynamics of gut microbiota and how age influences disease-gut microbiota associations is essential for improving women's health. By analyzing metagenomic data from 3625 healthy women, we revealed significant effects of age on gut microbiota and age-dependent patterns in microbial features, such as relative abundance, Shannon index, and microbial network properties. Additionally, declining trends in the predictive accuracy of gut microbiota for age groups were shown using iterative sub-sampling based random forest (ISSRF) model. Age-specific species markers were also identified, many of which were shared across age groups. To investigate the influence of age on disease-gut microbiota associations, metagenomic data from 681 women with various disease conditions and 491 matched healthy controls were collected. A substantial proportion of species markers for inflammatory bowel disease (IBD), type 2 diabetes (T2D), atherosclerotic cardiovascular disease (ACVD), and impaired glucose tolerance (IGT) differed in relative abundance across age groups, and were also age-specific species markers. Besides, the microbiota-based probabilities of IBD and ACVD were positively correlated with age. Furthermore, the age specificity of disease-gut microbiota associations was explored using the ISSRF model. Associations between IBD and gut microbiota were age-specific, with reduced stability of disease species markers in childhood and adolescence, possibly due to decrease in the effect size between patients and controls. Our findings provided valuable insights into promoting healthy aging and developing personalized healthcare strategies for women.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Adolescente , Humanos , Feminino , Saúde da Mulher
6.
J Environ Manage ; 347: 119091, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793288

RESUMO

Canopy interception loss affects the local water budget by removing a non-negligible proportion of rainfall from the terrestrial surface. Thus, quantifying interception loss is essential for thoroughly understanding the role of vegetation in the local hydrological cycle, especially in dryland ecosystems. However, sparse shrubs in dryland ecosystems have not been sufficiently studied, owing to time- and labor-intensive field experiments and challenging model parameterization. In this work, 4-year growing season field experiments on rainfall partitioning were conducted for three dominant shrub species (Haloxylon ammodendron, Nitraria sphaerocarpa, and Calligonum mongolicum) in an oasis-desert ecotone in northwestern China. The revised Gash analytical model was well parameterized, which reliably simulated the cumulative interception loss for sparse shrubs, and the validated model performed better for H. ammodendron, followed by C. mongolicum and N. sphaerocarpa, with relative errors of 8.4%, 15.4%, and 23.9%, respectively. The mean individual interception loss percentage for H. ammodendron (28.4%) was significantly higher than that for C. mongolicum (11.0%) and N. sphaerocarpa (10.9%) (p < 0.05), which could be ascribed to the higher canopy storage capacity and wet-canopy evaporation rate of H. ammodendron. For all shrub species, the majority proportion of interception loss occurred during canopy saturation and drying-out periods, accounting for approximately 79-85% of the cumulative interception loss. Overall, the mean local interception loss of three dominant shrub species in the ecotone removed nearly 17% of the corresponding cumulative rainfall during the growing season. These results not only provide methodological references for estimating the interception loss of sparse vegetation in dryland ecosystems, but also provide scientific insights for water resource management and ecosystem restoration in water-limited regions similar to the experimental site.


Assuntos
Chenopodiaceae , Fabaceae , Ecossistema , Chuva , Movimentos da Água , Água
7.
STAR Protoc ; 4(4): 102604, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37742182

RESUMO

The efficient functioning and stability of a perovskite photoactive layer are paramount to the performance of solar cell devices. Here, we present a protocol for the synthesis of a high-performance exemplified methylammonium lead iodide (CH3NH3PbI3 or MAPbI3) perovskite photoactive layer. We describe steps for preparing the requisite ratios of the precursor powders, synthesizing MAPbI3 single crystals, and selecting a suitable preparation technique. We then detail a flexible doping strategy for the perovskite photoactive layer. For complete details on the use and execution of this protocol, please refer to Wang and Wu (2020, 2022, 2023).1,2,3.


Assuntos
Compostos de Cálcio , Óxidos , Titânio , Cristalização , Solventes
8.
medRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693462

RESUMO

Purpose: Genetic variants in complement genes are associated with age-related macular degeneration (AMD). However, many rare variants have been identified in these genes, but have an unknown significance, and their impact on protein function and structure is still unknown. We set out to address this issue by evaluating the spatial placement and impact on protein structureof these variants by developing an analytical pipeline and applying it to the International AMD Genomics Consortium (IAMDGC) dataset (16,144 AMD cases, 17,832 controls). Methods: The IAMDGC dataset was imputed using the Haplotype Reference Consortium (HRC), leading to an improvement of over 30% more imputed variants, over the original 1000 Genomes imputation. Variants were extracted for the CFH , CFI , CFB , C9 , and C3 genes, and filtered for missense variants in solved protein structures. We evaluated these variants as to their placement in the three-dimensional structure of the protein (i.e. spatial proximity in the protein), as well as AMD association. We applied several pipelines to a) calculate spatial proximity to known AMD variants versus gnomAD variants, b) assess a variant's likelihood of causing protein destabilization via calculation of predicted free energy change (ddG) using Rosetta, and c) whole gene-based testing to test for statistical associations. Gene-based testing using seqMeta was performed using a) all variants b) variants near known AMD variants or c) with a ddG >|2|. Further, we applied a structural kernel adaptation of SKAT testing (POKEMON) to confirm the association of spatial distributions of missense variants to AMD. Finally, we used logistic regression on known AMD variants in CFI to identify variants leading to >50% reduction in protein expression from known AMD patient carriers of CFI variants compared to wild type (as determined by in vitro experiments) to determine the pipeline's robustness in identifying AMD-relevant variants. These results were compared to functional impact scores, ie CADD values > 10, which indicate if a variant may have a large functional impact genomewide, to determine if our metrics have better discriminative power than existing variant assessment methods. Once our pipeline had been validated, we then performed a priori selection of variants using this pipeline methodology, and tested AMD patient cell lines that carried those selected variants from the EUGENDA cohort (n=34). We investigated complement pathway protein expression in vitro , looking at multiple components of the complement factor pathway in patient carriers of bioinformatically identified variants. Results: Multiple variants were found with a ddG>|2| in each complement gene investigated. Gene-based tests using known and novel missense variants identified significant associations of the C3 , C9 , CFB , and CFH genes with AMD risk after controlling for age and sex (P=3.22×10 -5 ;7.58×10 -6 ;2.1×10 -3 ;1.2×10 -31 ). ddG filtering and SKAT-O tests indicate that missense variants that are predicted to destabilize the protein, in both CFI and CFH, are associated with AMD (P=CFH:0.05, CFI:0.01, threshold of 0.05 significance). Our structural kernel approach identified spatial associations for AMD risk within the protein structures for C3, C9, CFB, CFH, and CFI at a nominal p-value of 0.05. Both ddG and CADD scores were predictive of reduced CFI protein expression, with ROC curve analyses indicating ddG is a better predictor (AUCs of 0.76 and 0.69, respectively). A priori in vitro analysis of variants in all complement factor genes indicated that several variants identified via bioinformatics programs PathProx/POKEMON in our pipeline via in vitro experiments caused significant change in complement protein expression (P=0.04) in actual patient carriers of those variants, via ELISA testing of proteins in the complement factor pathway, and were previously unknown to contribute to AMD pathogenesis. Conclusion: We demonstrate for the first time that missense variants in complement genes cluster together spatially and are associated with AMD case/control status. Using this method, we can identify CFI and CFH variants of previously unknown significance that are predicted to destabilize the proteins. These variants, both in and outside spatial clusters, can predict in-vitro tested CFI protein expression changes, and we hypothesize the same is true for CFH . A priori identification of variants that impact gene expression allow for classification for previously classified as VUS. Further investigation is needed to validate the models for additional variants and to be applied to all AMD-associated genes.

9.
Front Microbiol ; 14: 1205767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608941

RESUMO

The goal of the research was to find alternative protein sources for animal farming that are efficient and cost-effective. The researchers focused on distillers dried grains with solubles (DDGS), a co-product of bioethanol production that is rich in protein but limited in its use as a feed ingredient due to its high non-starch polysaccharides (NSPs) content, particularly for monogastric animals. The analysis of the Paenibacillus pabuli E1 genome revealed the presence of 372 genes related to Carbohydrate-Active enzymes (CAZymes), with 98 of them associated with NSPs degrading enzymes that target cellulose, hemicellulose, and pectin. Additionally, although lignin is not an NSP, two lignin-degrading enzymes were also examined because the presence of lignin alongside NSPs can hinder the catalytic effect of enzymes on NSPs. To confirm the catalytic ability of the degrading enzymes, an in vitro enzyme activity assay was conducted. The results demonstrated that the endoglucanase activity reached 5.37 U/mL, while beta-glucosidase activity was 4.60 U/mL. The filter paper experiments did not detect any reducing sugars. The xylanase and beta-xylosidase activities were measured at 11.05 and 4.16 U/mL, respectively. Furthermore, the pectate lyase and pectin lyase activities were found to be 8.19 and 2.43 U/mL, respectively. The activities of laccase and MnP were determined as 1.87 and 4.30 U/mL, respectively. The researchers also investigated the effect of P. pabuli E1 on the degradation of NSPs through the solid-state fermentation of DDGS. After 240 h of fermentation, the results showed degradation rates of 11.86% for hemicellulose, 11.53% for cellulose, and 8.78% for lignin. Moreover, the crude protein (CP) content of DDGS increased from 26.59% to 30.59%. In conclusion, this study demonstrated that P. pabuli E1 possesses various potential NSPs degrading enzymes that can effectively eliminate NSPs in feed. This process improves the quality and availability of the feed, which is important for animal farming as it seeks alternative protein sources to replace traditional nutrients.

10.
BMC Pediatr ; 23(1): 429, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641008

RESUMO

BACKGROUND: Pediatric pulmonary hypertension (PH) is a serious and rare disease that is often derived from genetic mutations. Kabuki syndrome (KS) is a chromosomal abnormality disease that has its origin in the mutation of lysine methyltransferase 2D(KMT2D). Recent evidence has shown that KMT2D mutations are associated with pediatric pulmonary disorders. However, the relationship between the clinical courses of PH and the KMT2D mutation is reported in extremely few cases. Therefore, in this paper, a case was presented and previous literature was reviewed for better understanding of the correlation between pediatric PH and KMT2D mutations. CASE PRESENTATION: A 3-year-old girl was transferred to our center for severe cough, shortness of breath, fatigue and fever. Physical examination revealed facial deformities and growth retardation. Echocardiography showed a small atrial septal defect (ASD), and right heart catheterization indicated a significant increase in pulmonary vascular pressure and resistance. The genetic test suggested that she had a KMT2D gene mutation. The patient was finally diagnosed with KS. She was given targeted drugs to reduce pulmonary vascular pressure, but the effect was unsatisfactory. CONCLUSIONS: KS can be complicated with multiple organ malformations and dysfunction. With the progress of next generation sequencing, an increasing number of new phenotypes related to KMT2D mutations have been reported. A bold hypothesis is proposed in this article, that is, PH may be a new phenotype associated with KMT2D mutations. It is suggested that KS and PH should be differentiated from each other to avoid delayed diagnosis and treatment in clinical practice. There is no specific drug for KS treatment. The prognosis of children with inherited PH is usually poor, and lung transplantation may increase their survival rates.


Assuntos
Anormalidades Múltiplas , Hipertensão Pulmonar , Humanos , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Testes Genéticos
11.
Adv Exp Med Biol ; 1415: 157-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440029

RESUMO

Protein function can be impacted by changes in protein structure stability, but determining which change has impact is complex. Stability can be affected by a large change in the tertiary (3D) structure of the protein or due to free-energy changes caused by single amino acid substitutions. Changes in the DNA sequence can have minor or major impact on protein stability, which can lead to disease. Inherited retinal degenerations are generally caused by single mutations which are mostly located in protein-coding regions, while age-related macular degeneration (AMD) is a complex disorder that can be influenced by some genetic variants impacting proteins involved in the disease, although not all AMD risk variants lead to amino acid changes. Here, we review ways that proteins may be affected, the identification and understanding of these changes, and how to identify causal changes that can be targeted to develop treatments to alleviate retinal degenerative disease.


Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Degeneração Retiniana/genética , Retina , Degeneração Macular/genética , Mutação , Proteínas/química , Estabilidade Proteica
12.
EuroIntervention ; 19(8): 684-694, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37458100

RESUMO

BACKGROUND: Long-term clinical outcomes after pulmonary artery denervation (PADN) in patients with Group 1 pulmonary arterial hypertension (PAH) have not been reported. AIMS: We aimed to investigate the effect of PADN on 1-year outcomes in patients with PAH. METHODS: In the multicentre PADN-CFDA trial, 128 patients with Group 1 PAH were randomly assigned to PADN plus a phosphodiesterase-5 inhibitor (PDE-5i) versus a sham PADN procedure plus a PDE-5i. The principal endpoint of interest for the present study was clinical worsening at 1 year after randomisation, the composite of worsening of PAH (increase in WHO functional class, need for additional PAH treatments or PAH-related hospitalisation), atrial septostomy, listing for lung transplantation, or all-cause death. RESULTS: One-year clinical follow-up was available in all patients. At 1 year, clinical worsening had occurred in 3 (4.8%) patients in the PADN plus PDE-5i group and in 15 patients (23.1%) in the sham plus PDE-5i group (adjusted hazard ratio: 0.17; 95% confidence interval [CI]: 0.05-0.60; p=0.006), driven by significantly increased rates of PAH-related hospitalisations, worsening functional class and the requirement for additional PAH treatments in the sham group. Results were consistent in high-risk, intermediate-risk and low-risk patients (pinteraction=0.186). Patients treated with PADN plus PDE-5i had an improvement in the between-group change in the six-minute walking distance (6MWD) from baseline to 1 year of 81.2 m (95% CI: 50.3-112.2; p<0.001) compared with PDE-5i treatment alone. CONCLUSIONS: In this multicentre sham-controlled randomised trial, PADN treatment for Group 1 PAH significantly reduced clinical worsening and improved the 6MWD during 1-year follow-up in patients treated with a PDE-5i.

13.
Small ; 19(38): e2301874, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37196419

RESUMO

The practical application of aqueous zinc batteries are highly limited by unsatisfied Zn anodes for the unavoidable dendrite growth and side reactions. Crystal orientation engineering is an effective way to overcome these inherent drawbacks. However, how to achieve Zn plating with manipulated crystallographic orientation is still a great challenge. Herein, a uniform (002)-oriented Zn metal anode is reported based on a directional cation recognition and crystal assembly strategy. The activated layered double hydroxide (Act-LDH) exhibits favorable adsorption energy with Zn2+ and high lattice matching with Zn (002) plane, which can be served as directional recognition layer to anchor Zn2+ and regulate crystallographic orientation of Zn as well. As demonstration, Zn crystals with ultrahigh ratio of (002)/(100) plane of 15.7 are assembled parallelly on horizontal Act-LDH, in which high CE of 99.85% maintains over 18 000 cycles. The symmetric battery with (002)-oriented Zn shows stable plating/stripping process over 1650 and 420 h at 1 mA cm-2 /0.5 mA h cm-2 and 10 mA cm-2 /5 mA h cm-2 , respectively, which is 9 and 12 times higher than unoriented polycrystalline Zn. Moreover, as-assembled full battery displays high specific capacity of 120 mA h g-1 at 2 A g-1 over 1800 cycles.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36880988

RESUMO

Catalytic nanomedicine can in situ catalytically generate bactericidal species under external stimuli to defend against bacterial infections. However, bacterial biofilms seriously impede the catalytic efficacy of traditional nanocatalysts. In this work, MoSe2 nanoflowers (NFs) as piezoelectric nanozymes were constructed for dual-driven catalytic eradication of multi-drug-resistant bacterial biofilms. In the biofilm microenvironment, the piezoelectricity of MoSe2 NFs was cascaded with their enzyme-mimic activity, including glutathione oxidase-mimic and peroxidase-mimic activity. As a result, the oxidative stress in the biofilms was sharply elevated under ultrasound irradiation, achieving a 4.0 log10 reduction of bacterial cells. The in vivo studies reveal that the MoSe2 NFs efficiently relieve the methicillin-resistant Staphylococcus aureus bacterial burden in mice under the control of ultrasound at a low power density. Moreover, because of the surface coating of antioxidant poly(ethyleneimine), the dual-driven catalysis of MoSe2 NFs was retarded in normal tissues to minimize the off-target damage and favor the wound healing process. Therefore, the cascade of piezoelectricity and enzyme-mimic activity in MoSe2 NFs reveals a dual-driven strategy for improving the performance of catalytic nanomaterials in the eradication of bacterial biofilms.

15.
Toxicon ; 227: 107095, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972839

RESUMO

Deoxynivalenol (DON) is one of the most harmful and well-known toxins present in food and animal feed throughout the world. Citrobacter freundii (C. freundii-ON077584), a novel DON-degrading strain, was isolated from rice root-linked soil samples. The degrading properties, including DON concentrations, incubation pH, incubation temperatures, bacterial concentrations, and acid treatment effect on degradation, were evaluated. At pH 7 and an incubation temperature of 37 °C, C. freundii demonstrated the capability to degrade more than 90% of DON. The degraded products of DON were identified as 3-keto-DON and DOM-1, which were confirmed by High Performance Liquid Chromatography (HPLC) and Ultra-Performance Liquid Chromatography hyphenated with Tandem Mass Spectrometry (UPLC-MS/MS) analyses. The mechanism of DON degradation into 3-keto-DON and DOM-1 by this bacterial strain will be further explored to identify and purify novel degrading enzymes that can be cloned to the microorganism and added to the animal feed to degrade the DON in the digestion tract.


Assuntos
Micotoxinas , Animais , Micotoxinas/análise , Cromatografia Líquida , Citrobacter freundii/metabolismo , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise
16.
J Heart Lung Transplant ; 42(8): 1140-1151, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36990173

RESUMO

BACKGROUND: The differential treatment effect of pulmonary artery denervation (PADN) in pulmonary arterial hypertension (PAH) patients with different risk burdens remains unclear. This study aimed to determine the effectiveness of PADN in low vs intermediate-high-risk PAH patients. METHODS: In total, 128 patients with treatment naive PAH included in the PADN-CFDA trial were categorized into low-risk and intermediate-high-risk patients. The primary endpoint was the between-group difference in the change in 6-min walk distance (6 MWD) from baseline to 6 months. RESULTS: In the intermediate-high-risk group, those treated with PADN and PDE-5i had a greater improvement in 6 MWD from baseline to 6 months as compared to those treated with sham plus PDE-5i. From baseline to 6 months, pulmonary vascular resistance (PVR) was reduced by -6.1 ± 0.6 and -2.0 ± 0.7 Wood units following PADN plus PDE-5i and sham plus PDE-5i, respectively, along with the significant reduction of NT-proBNP in the intermediate-high-risk group. However, there were no significant differences in 6 MWD, PVR, and NT-proBNP between the PADN plus PDE-5i and sham plus PDE-5i groups among low-risk patients. Moreover, the right ventricular function was equally improved by PADN treatment across the low-, intermediate-, and high-risk groups. Clinical worsening was less with PADN plus PDE-5i treatment during the 6-month follow-up. CONCLUSIONS: In patients with pulmonary arterial hypertension, pulmonary artery denervation plus PDE-5i improved exercise capacity, NT-proBNP, hemodynamic, and clinical outcomes during the 6-month follow-up among intermediate-high risk patients.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Denervação , Hipertensão Pulmonar Primária Familiar , Hipertensão Arterial Pulmonar/cirurgia , Artéria Pulmonar/cirurgia , Fatores de Risco
17.
Adv Sci (Weinh) ; 10(8): e2206479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646523

RESUMO

Room temperature liquid NaK alloy is a promising candidate for high performance metal batteries, due to its dendrite-free property and high energy density. However, its practical application is hindered by the high surface tension of liquid NaK, which causes difficulties in maintaining a stable contact with a current collector. Here, the authors demonstrate the extraordinary stable confinement of NaK alloy at room temperature by constructing a super-wetting substrate, which is based on highly dispersed cobalt-single-atom carbon nanoarrays. The developed liquid anode electrode prevented successfully the leakage of NaK alloy even in harsh stress (>5 MPa) or sharp shock conditions. The symmetric cells achieved ultra-long reversible plating/stripping cycling life in both Na-ion (>1010 hrs) and K-ion electrolytes (>4000 hrs) at 10 mA cm-2 /10 mAh cm-2 . Upon fitting with Na3 V2 (PO4 )3 , the NaK assembled full battery provided high energy density (332.6 kWh kg-1 ) and power density (11.05 kW kg-1 ) with excellent stability after >21600 cycles, which is the best value reported so far. The prepared pouch cell was able to drive a four-axis aircraft, demonstrating a great prospect in practical application. This work offers a new approach in the preparation of advanced dendrite-free liquid metal anodes with promising applications in electrochemical energy storage.

18.
Sci Total Environ ; 858(Pt 2): 159928, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343808

RESUMO

Rainfall partitioning by the vegetation canopy represents a significant component of the local hydrological cycle by reshaping the amount and spatial distribution of rainfall. Measuring the components of rainfall partitioning, however, has been a challenging task due to laborious- and time-consuming field experiments. In this study, to probe the influences of long-term afforestation on dynamic patterns of rainfall partitioning, the dominant sand-stabilizing shrub Haloxylon ammodendron at three different ages was selected for field measurements during the 2020-2021 growing season. The throughfall percentage for young H. ammodendron (YH, 75.9 %) was significantly higher than that for middle-aged H. ammodendron (MAH, 63.4 %) and mature H. ammodendron (MH, 62.4 %) (p < 0.05 for all cases). However, the interception loss percentage of YH (22.3 %) was significantly lower than that for MAH (35.0 %) and MH (36.5 %) (p < 0.05 for all cases). No significant difference was found for stemflow percentage among YH (1.8 %), MAH (1.5 %) and MH (1.1 %). Smaller rainfall events contributed to a higher interception loss percentage and a lower net rainfall percentage for all ages. Both throughfall and stemflow percentage first showed increasing trends and then tended to be stable with increasing rainfall amount and duration, whereas interception loss percentage showed the opposite patterns. Rainfall partitioning was significantly correlated with the plant area index, stem basal area and canopy height (p < 0.05 for all cases), which may account for significant differences in rainfall partitioning patterns, as all shrubs experienced the same weather conditions. The average funneling ratio was 56.6, 26.7 and 17.9 for YH, MAH and MH, respectively. These results suggested that H. ammodendron afforestation can have a significant impact on rainfall partitioning by reducing net rainfall reaching the soil and may have some implications for local water budget and ecosystem management in oasis-desert ecotones.


Assuntos
Ecossistema , Chuva , Areia , Movimentos da Água , China
19.
ACS Nano ; 16(12): 21491-21504, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36453617

RESUMO

Precise catalysis is pursued for the biomedical applications of artificial enzymes. It is feasible to precisely control the catalysis of artificial enzymes via tunning the temperature-dependent enzymatic kinetics. The safety window of cold temperatures (4-37 °C) for the human body is much wider than that of thermal temperatures (37-42 °C). Although the development of cold-activated artificial enzymes is promising, there is currently a lack of suitable candidates. Herein, a cold-activated artificial enzyme is presented with Bi2Fe4O9 nanosheets (NSs) as a paradigm. The as-obtained Bi2Fe4O9 NSs possess glutathione oxidase (GSHOx)-like activity under cold temperature due to their pyroelectricity. Bi2Fe4O9 NSs trigger the cold-enzymatic death of tumor cells via apoptosis and ferroptosis, and minimize the off-target toxicity to normal tissues. Moreover, an interventional device is fabricated to intelligently and remotely control the enzymatic activity of Bi2Fe4O9 NSs on a smartphone. With Bi2Fe4O9 NSs as an in situ vaccine, systemic antitumor immunity is successfully activated to suppress tumor metastasis and relapse. Moreover, blood biochemistry analysis and histological examination indicate the high biosafety of Bi2Fe4O9 NSs for in vivo applications. This cold nanozyme provides a strategy for cancer vaccines, which can benefit the precise control over catalytic nanomedicines.


Assuntos
Temperatura Baixa , Neoplasias , Humanos , Temperatura , Nanomedicina , Catálise , Neoplasias/tratamento farmacológico
20.
Small ; 18(46): e2204742, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216586

RESUMO

Surface states are one of the crucial factors determining the phase stability of formamidinium-based perovskites. Compared with other compositions, exclusive lattice strain in FAPbI3 perovskite generates defects at the surface more readily, making them more vulnerable at the surface and easier to trigger the phase transition from α-phase to the non-perovskite δ-phase. In order to regulate the surface quality, here, a chemi-mechanical cleavage approach is reported, i.e., tape peel-zone (PZ), implemented by attaching and peeling off the ordinary Kapton Tapes. The PZ approach can simultaneously eliminate the surface defects of perovskite and siliconize the film surface with hydrophobic silicone compounds. These two functionalities endow α-FAPbI3 perovskite with a robust hydrophobic surface, which can sustain for 30 days under a relative humidity of 60% and withstand the high temperature up to 240 °C. The unencapsulated PZ-treated cells show 80.3% of initial performance after 90 h of continuous operation in ambient air, which is 31.4 times more stable than the pristine cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA